DESeq2 Visualizer
This tool creates interactive visualizations of DESeq2 differential expression analysis results, showing a MA plot, Volcano plot, and dispersion plot with linked interactions. By default, the tool loads a sample DESeq2 results file from the pasilla
dataset. You can also upload your own data or generate random data for demonstration purposes. Instructions for creating your own input files are at the bottom of this page!
This page works best on a desktop device. The plots may be too small to effectively use on mobile.
Visualize Your Own Data
Gene Information
Hover over a point to see gene details
How To Generate Input Data from DESeq2
The visualization accepts a CSV file with the following columns:
gene_id
: Gene identifierbaseMean
: Base mean expressionlog2FoldChange
: Log2 fold changepvalue
: Unadjusted p-valuepadj
: Adjusted p-valuelfcSE
: Log fold change standard errorstat
: Statistical test valuedispersion
: Dispersion value (optional)
You can generate this file using the following R code:
# Load DESeq2 library
library(DESeq2)
# Assuming you have a DESeqDataSet object called 'dds'
# and have run DESeq analysis:
# dds <- DESeq(dds)
# Get results
res <- results(dds)
# Add gene IDs and dispersion values
res$gene_id <- rownames(res)
res$dispersion <- dispersions(dds)
# Write to CSV
write.csv(res, "deseq2_results.csv", row.names = FALSE, quote=FALSE)